Życie

Arkusze z odsetkami złożonymi

Arkusze z odsetkami złożonymi



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Odsetki złożone są ważne dla każdego, kto dokonuje inwestycji lub spłaca pożyczki, aby zrozumieć, w jaki sposób najwięcej skorzystać z odsetek. W zależności od tego, czy naliczane są odsetki składane, czy też suma, może to uczynić osobę o wiele więcej pieniędzy lub kosztować ją o wiele więcej niż pożyczka.

Co to jest składane odsetki?

Odsetki złożone to odsetki od kwoty głównej, a każdy z naliczonych odsetek często nazywany jest odsetkami od odsetek. Najczęściej oblicza się go przy reinwestowaniu zysków uzyskanych z odsetek od kwoty z powrotem do pierwotnego depozytu, co znacznie zwiększa kwotę uzyskaną przez inwestora.

Mówiąc najprościej, gdy odsetki się łączą, są one dodawane z powrotem do pierwotnej sumy.

Obliczanie odsetek składanych

Wzór zastosowany do obliczenia odsetek złożonych to M = P (1 + i) n. M jest kwotą ostateczną obejmującą kwotę główną, P jest kwotą główną (pierwotna pożyczona lub zainwestowana kwota), i jest stopą procentową rocznie, a n jest liczbą lat inwestycji.

Na przykład, jeśli dana osoba otrzyma 15% odsetek od inwestycji o wartości 1000 USD w pierwszym roku - w sumie 150 USD - i ponownie zainwestuje pieniądze w pierwotną inwestycję, to w drugim roku osoba otrzyma 15% odsetek od 1000 USD i 150 USD to zostało ponownie zainwestowane.

Przećwicz obliczanie złożonych odsetek

Zrozumienie, w jaki sposób naliczane są odsetki złożone, może być pomocne przy określaniu płatności za pożyczki lub przyszłych wartości inwestycji. Te arkusze zawierają wiele realistycznych scenariuszy odsetkowych, które pozwalają ćwiczyć stosowanie formuł odsetkowych. Te problemy z ćwiczeniami, wraz z dużą wiedzą podstawową o liczbach dziesiętnych, odsetkach, prostym zainteresowaniu i słownictwie zainteresowań, przygotują cię do sukcesu w znajdowaniu złożonych wartości odsetek w przyszłości.

Klucze odpowiedzi można znaleźć na drugiej stronie każdego pliku PDF.

01 z 05

Arkusz z odsetkami złożonymi nr 1

Wydrukuj ten arkusz odsetek składanych, aby lepiej zrozumieć formułę odsetek składanych. Arkusz wymaga wprowadzenia prawidłowych wartości do tego wzoru, aby obliczyć odsetki od pożyczek i inwestycji, które są w większości składane raz w roku lub co kwartał.

Powinieneś przejrzeć złożone formuły odsetek, aby pomóc ci określić, jakie wartości są wymagane do obliczenia każdej odpowiedzi. Aby uzyskać dodatkowe wsparcie, na stronie internetowej Komisji Papierów Wartościowych i Giełd Stanów Zjednoczonych znajduje się przydatny kalkulator do wyszukiwania odsetek składanych.

02 z 05

Arkusz z odsetkami złożonymi nr 2

Drugi arkusz odsetek składanych zawiera odsetki składane częściej, takie jak półroczne i miesięczne, oraz większe początkowe kwoty główne niż w poprzednim arkuszu.

03 z 05

Arkusz z odsetkami złożonymi nr 3

Trzeci arkusz odsetek składanych obejmuje bardziej złożone procenty i ramy czasowe z pożyczkami i inwestycjami na znacznie większą skalę. Pozwalają ci zastosować twoje zrozumienie do rzeczywistych scenariuszy, takich jak zaciągnięcie pożyczki na samochód.

04 z 05

Arkusz z odsetkami złożonymi nr 4

Ten arkusz kalkulacyjny odsetek ponownie analizuje te koncepcje, ale zagłębia się w długoterminowe składanie odsetek za pomocą formuł dla tego rodzaju odsetek używanych najczęściej przez banki niż zwykłe odsetki. Obejmuje duże pożyczki zaciągnięte przez firmy i osoby fizyczne podejmujące znaczne decyzje inwestycyjne.

05 z 05

Arkusz z odsetkami złożonymi nr 5

Końcowy arkusz odsetek składanych zawiera kompleksowe spojrzenie na zastosowanie formuły odsetek składanych w prawie każdym scenariuszu, z uwzględnieniem sum głównych o wielu rozmiarach i różnych stopach procentowych.

Mając na uwadze te podstawowe koncepcje, zarówno inwestorzy, jak i odbiorcy pożyczek mogą czerpać korzyści ze zrozumienia złożonych odsetek, umożliwiając im podejmowanie właściwych decyzji dotyczących najbardziej korzystnych stóp procentowych.


Obejrzyj wideo: MATURA - MATEMATYKA PODSTAWOWA - Liczby rzeczywiste - Procent składany, podatki i lokaty #9 (Sierpień 2022).